Categories
- All
- Agronomy Basics
- Agronomy Consulting
- Agronomy Support
- Amino Acid Foliar
- Amino Acids
- Amino Chelation
- Amino Nitrogen
- Antioxidant Defense
- Auxin
- Bacterial Dominance
- Balanced Nutrition
- Base Saturation
- Biofilms
- Biological Farming
- Biological Fertility
- Biological Nitrogen Fixation
- Boron
- Boron Deficiency
- Boron Nutrition
- Calcium Magnesium Balance
- Calcium Nutrition
- Carbon Based Fertility
- Carbon Cycling
- Carbon Flow
- Carbon to Nitrogen Ratio
- Carbon to Nutrient Balance
- Cation Exchange Capacity
- CEC
- Cell Wall Formation
- Cell Wall Strength
- Chelation
- Chloride
- Chloride Deficiency
- Chlorophyll Formation
- Clay and Organic Matter
- Cobalt
- Cobalt Deficiency
- Cold Soil Biology
- Cold Weather Composting
- Compaction Relief
- Compost Biology
- Compost Extract
- Compost Heat
- Compost Pile Size
- Compost Quality
- Compost Tea
- Compost Troubleshooting
- Copper
- Copper Deficiency
- Corn Foliar Nutrition
- Corn Grain Fill
- Corn Recovery
- Corn Residue
- Corn Residue Management
- Cost Management
- Cover Crop Mixes
- Cover Crop Roots
- Cover Crops
- Crop Budgeting
- Crop Decision Making
- Crop Finishing
- Crop Growth Monitoring
- Crop Management
- Crop Maturity
- Crop Monitoring
- Crop Nutrition
- Crop Planning
- Crop Profitability
- Crop Protection
- Crop Residue Breakdown
- Crop Resilience
- Crop Stress Indicators
- Crop Stress Management
- Crop Stress Tolerance
- Disease Resistance
- Disease Triangle
- Ear Fill
- Early Season Management
- EDTA Chelates
- End of Season Evaluation
- Energy Transfer
- Enzyme Activation
- Enzyme Activity
- Enzymes
- Erosion Control
- Erosion Prevention
- Extractor Systems
- Fall Application
- Fall Fertility
- Fall Soil Building
- Farm Economics
- Farm Management
- Farmer Education
- Fertility Management
- Fertility ROI
- Field Observation
- Field Scouting
- Field Uniformity
- Flowering
- Foliar Applications
- Foliar Nutrition
- Foliar Program
- Foliar Timing
- Foliar Uptake
- Forgotten Elements Series
- Freeze Thaw Cycles
- Freeze Thaw Cycling
- Functional Nutrition
- Fungal Disease Prevention
- Fungal Dominance
- Fungi and Bacteria Balance
- Grain Fill
- Green Cover SmartMix
- Harvest Scouting
- Heat Stress Management
- Herbicide Recovery
- High Temperature Spraying
- Hormone Production
- Humic Acid
- Hybrid Performance
- Hydrogenase
- In-Furrow Biology
- Input Management
- Iron
- Iron Deficiency
- Kernel Development
- Late Season Disease
- Late Season Management
- Leaf Biology
- Legume Nodulation
- Legumes
- Lignin Formation
- Living Roots
- Manganese
- Manganese Deficiency
- Microbial Activity
- Microbial Balance
- Microbial Diversity
- Microbial Inoculants
- Micronutrient Deficiencies
- Micronutrients
- Moisture Management
- Molasses
- Molybdenum
- Molybdenum Deficiency
- Mycorrhizal Fungi
- Next Season Planning
- Nickel
- Nitrate Conversion
- Nitrate Imbalance
- Nitrification Inhibitors
- Nitrogen Balance
- Nitrogen Cycle
- Nitrogen Efficiency
- Nitrogen Fixation
- Nitrogen Metabolism
- Nitrogen Mineralization
- Nitrogen Reduction
- Nitrogen Stabilization
- Nitrogen Supply
- Nutrient Availability
- Nutrient Balance
- Nutrient Cycling
- Nutrient Dynamics
- Nutrient Efficiency
- Nutrient Holding Capacity
- Nutrient Recovery
- Nutrient Uptake
- On-Farm Composting
- On-Farm Decision Making
- Operation-Specific Recommendations
- Organic Matter Breakdown
- Organic Matter Building
- Organic Matter Management
- Oxidative Stress
- Oxygen Management
- P Availability
- P K Ratio
- Personalized Agronomy
- Phosphate Solubilizing Bacteria
- Phosphorus Management
- Phosphorus Uptake
- Photosynthesis
- Photosynthesis Recovery
- Photosystem II
- Plant Availability
- Plant Defense
- Plant Hydration
- Plant Immunity
- Plant Metabolism
- Plant Microbe Interaction
- Plant Physiology
- Plant Stress Response
- Plant Structure
- Pollination
- Post Harvest Management
- Potassium Nutrition
- Pre R1 Window
- Precision Nutrition
- Proactive Disease Management
- Protein Formation
- Regeneration Principles
- Regenerative Agriculture
- Reproductive Growth
- Residue Breakdown
- Residue Digesters
- Residue Digestion
- Residue Management
- Resilient Farming
- Rhizobia
- Rhizobia Activity
- Rhizosphere
- ROI Agronomy
- Root Development
- Root Exudates
- Root Health
- Root Zone
- Root Zone Support
- Row Crop Biology
- RowVive
- Sap Analysis
- Sap pH
- Seed Development
- Selenium
- Selenium Deficiency
- Silica Nutrition
- Silicon
- Silicon Deficiency
- Silicon Nutrition
- Smart Input Decisions
- Soil Biology
- Soil Carbon
- Soil Chemistry
- Soil Fertility
- Soil Health
- Soil Indicators
- Soil Management
- Soil Moisture Dynamics
- Soil Moisture Stress
- Soil Organic Matter
- Soil Phosphorus
- Soil Protection
- Soil Structure
- Soil Temperature Effects
- Soil Testing
- Soil Variability
- Source Sink Balance
- Soybean Foliar Nutrition
- Soybean Grain Fill
- Soybean Growth Stages
- Soybean Nodulation
- Soybean Recovery
- Split Nitrogen Applications
- Standability
- Stomatal Activity
- Stomatal Function
- Stress Mitigation
- Stress Tolerance
- Sulfur
- Sulfur Cycling
- Sulfur Deficiency
- Summer Crop Stress
- Sustainable Farming
- Tank Compatibility
- Test Weight
- Thermophilic Composting
- Trace Elements
- Urea Conversion
- Urease
- Urease Inhibitors
- Water Balance
- Water Infiltration
- Water Management
- Weather Based Management
- Weed Suppression
- Wheat Foliar Nutrition
- Wheat Grain Fill
- Wheat Recovery
- Winter Composting
- Winter Soil Management
- Yield Foundation
- Yield Map Analysis
- Yield Potential
- Yield Protection
- Zinc
- Zinc Deficiency
Scouting from the Combine
With harvest quickly approaching, most of us are focused on making sure the combine is ready, the grain cart is greased, and trucks are staged. It's easy to fall into the mindset that harvest is just about getting the crop out and into the bin. But harvest is also one of the best times to scout your fields. You're moving across every acre, seeing more of the crop than at any other point in the year.
What you notice during harvest can tell you just as much—if not more—than what's on the yield monitor. The observations you make now will become the foundation for next year's management decisions and ultimately your profitability.
What to Look For
While yield is important, harvest offers a front-row seat to agronomic clues that can guide next year's decisions. The key is knowing what to look for and understanding what those observations mean for future management.
1. Standability Assessment
- Are stalks holding up or breaking down early?
- Weak stalks may point to late-season stress, nutrient imbalances, or disease pressure.
2. Ear Fill Evaluation
- Are tips fully developed or are you seeing tip-back?
- This often indicates stress during pollination or grain fill, highlighting where fertility or timing fell short.
3. Field Uniformity
- Are ears and plant height consistent across passes?
- Variability can be tied back to soil structure, compaction, drainage, or nutrient stratification.
4. Disease Presence
- Even if yields are strong, leaf disease or stalk rot observed at harvest are signals to adjust management.
- Document disease locations for targeted treatment strategies next season.
Why Documenting Now Matters
The challenge with post-harvest reflection is memory fades. By December, it's hard to recall exactly which parts of a field had late-season disease pressure or lodging issues. Taking a few minutes during harvest to snap a photo, drop a pin, or jot down notes can give you an accurate record that's much more valuable than trying to reconstruct it months later.
These observations, combined with yield maps and soil data, create a powerful foundation for next year's plans. The investment of time during harvest pays dividends in more precise management decisions.
A Simple Cab Checklist
- Take 3–5 photos per field of ears, stalks, or problem spots.
- Mark areas on your yield monitor that consistently underperform and flag them for deeper soil or tissue testing later.
- Write down quick impressions—lodging, compaction signs, ear development—while they're fresh in your mind.
- Compare across hybrids/varieties to see which held up better under this season's conditions.
Turning Observations into Action
- Fine-tune hybrid placement based on performance under specific field conditions.
- Identify nutrient deficiencies that tissue or sap analysis may have missed.
- Target biologicals or residue management where they'll make the biggest difference.
- Build confidence in what's working—and cut out what isn't delivering returns.
The best time to learn from your crop is when you're bringing it in. Every observation you make now is an investment in next year's success. Don't let that opportunity pass by while you're focused solely on getting grain in the bin.